Bulk Pipeline Creation Script
Infoworks DataFoundry allows running a script to create pipelines with the same structure, in bulk.
Following are the steps to run the script for bulk pipeline creation:
- Navigate to the $IW_HOME/scripts/pipeline folder.
 - Run the script using the following command: 
python pipeline_create.py -s <input_sql> -c <input_csv> -t <TOKEN> -o <output_csv> 
where,
<input_sql>is the path of the SQL template based on which new pipelines will be created,<input_csv>is the path of the CSV file that includes the specifics of the pipelines to be created,<TOKEN>is the user authentication token obtained from the user settings page<output_csv>is the output CSV file generated once the script is run.
Sample Query
select * from {table1} UNION select * from {table2}where,
{table1}, {table2}...{tableN) are the alias for the actual tables given in the table_names column in the input CSV file.
Sample CSV Input
x
    domain_name,pipeline_name,source_name,table_names,target_schema,target_table,target_hdfs,target_mode,target_natural_keys,target_partition_keys,target_no_of_sec_partitionsImportTest,test1,salesDB,"catalog_sales,item,date_dim",dev_testing,big_ticket_sales1,/iw/pipelines/dev_testing/big_ticket_sales1,OVERWRITE,i_item_id,i_category,1ImportTest,test2,salesDB,"catalog_sales,item,date_dim",dev_testing,big_ticket_sales11,/iw/pipelines/dev_testing/big_ticket_sales11,OVERWRITE,"i_item_id,i_item_desc",,1The CSV file must contain the following columns:
- Domain Name
 - Pipeline Name
 - Schema Name
 - Table Name
 - Target Schema
 - Target Table
 - Target HDFS Location
 - Target Mode
 - Target Natural Keys (comma separated)
 - Target Partition Keys (comma separated)
 - Target Number of Secondary Partitions
 
The output CSV file includes the following columns:
- PipelineName
 - Pipeline ID (created)
 - Error Description
 - Pipeline Name Already Exists
 - Table Not Found (Table Details)
 - Input Error